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Abstract

Hydrogen deposition velocities (vd) were estimated by field chamber measurements
and model simulations. A closed-chamber method was used for soil deposition stud-
ies in Helsinki, Finland, at an urban park inhabited by broad-leaved trees. Radon
tracer method was used to estimate the vdin nighttime when photochemical reactions5

were minimal and radon gas was concentrated to shallow boundary layer due to ex-
halation from soil. A two-dimensional atmospheric model was used for calculation of
respective vd values and radon exhalation rate. vd and radon exhalation rates were
lower in winter than in summer according to all methods. The radon tracer method
and two-dimensional model results for hydrogen deposition velocity were in the range10

of 0.13 mm s−1 to 0.90 mm s−1 (radon tracer) and 0.12 mm s−1 to 0.61 mm s−1 (two-
dimensional). The soil chamber results for vd were 0.00 mm s−1 to 0.70 mm s−1. Both
models and chamber measurements revealed relation between one week cumulative
rain sum and deposition velocity. Lower vd values were usually measured in high soil
moisture conditions. Precipitation occurring a few days before chamber measurements15

decreased vd values. The snow cover also lowered vd.

1 Introduction

There is a need to better understand interactions of molecular hydrogen in the atmo-
sphere. The interest to develop carbon dioxide free energy production methods pro-
motes the hydrogen economy goals to utilize hydrogen as an energy transport media.20

Energy produced using cleaner methods (e.g. wind power) can be used to split water
to hydrogen (and oxygen) electrochemically.

The interest in hydrogen in the past few years has accelerated and steered the re-
search to find out the processes, where hydrogen is participating, these include strato-
spheric (Rahn et al., 2003; Röckmann et al., 2003) and tropospheric studies (Barnes25

et al., 2003). Rhee et al. (2006) estimated that soil uptake is the largest sink being
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responsible for 82% of tropospheric hydrogen turnover globally and that the soil uptake
is higher in northern hemisphere due to larger land coverage. An extensive review of
tropospheric hydrogen cycle was made by Ehhalt et al. (2009). A companion article
by Aalto et al. (2009) is focused on atmospheric variations and to the traffic emission
of hydrogen. Recent field measurements to estimate the soil uptake of hydrogen were5

made in agricultural area in Heidelberg (Schmitt et al., 2008), in forest, marsh and
desert area in California (Smith-Downey et al., 2008), in northern boreal zone (Lallo et
al., 2008) in Alaska (Rahn et al., 2002). Yonemura et al. (1999, 2000) made field stud-
ies in temperate forest and in arable field in Japan. Earlier field measurements were
made by Conrad and Seiler (1980, 1985) in Germany and in Africa. Soil microbes10

and free soil enzymes are responsible for hydrogen uptake (Conrad, 1996; Constant
et al., 2008, 2009), and soil hydrogenases that are responsible for hydrogen uptake
have recently been extracted by Guo and Conrad (2008) and Constant et al. (2008).
Photochemical production and destruction of atmospheric hydrogen is hydroxyl radical
controlled. (Simmonds et al., 2000).15

Radon tracer method is suitable for estimating various greenhouse gas emissions
(Zahorovski et al., 2006) including nitrous oxide (Schmidt et al., 2001), methane (Levin
et al., 1999) and carbon dioxide (Langendörfer et al., 2002), and has recently been ap-
plied for hydrogen by Hammer and Levin (2009). The regional representability of radon
tracer method depends on integration time of the fluxes, site topography and meteoro-20

logical parameters (Levin et al., 1999). The results are dependent on radon exhalation
rate, which varies depending mainly on grain size distribution and soil porosity. The
high soil moisture/water content is also known to hinder the radon exhalation (Levin
et al., 2002) Latitudinal distribution of 222Rn flux is examined by Conen and Robert-
son (2002). A simple two-dimensional atmospheric model, based on earlier work by25

Aalto et al. (2006) and Lallo et al. (2009), was utilized to estimate local radon exhala-
tion and hydrogen uptake rates by inverting the soil fluxes from atmospheric measure-
ments. These two models and chamber measurements were used to evaluate the soil
sink strength and were compared against each other.

14875

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14873/2009/acpd-9-14873-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14873/2009/acpd-9-14873-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14873–14899, 2009

Hydrogen soil
deposition at an

urban site in Finland

M. Lallo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2 Materials and methods

The urban park near the center of Helsinki in Kumpula (60◦12′13′′ N, 24◦57′40′′ E) was
selected for studies of soil uptake of molecular hydrogen. The vegetation consists
mainly of broad-leaved trees and low grass species. The location is under influence of
local traffic and adjacent sea. The closest high traffic volume roads Hämeentie 44 7005

and Mäkelänkatu 45 000 cars a day were in the minimum distance of 350 m and 700 m,
respectively.

2.1 Soil chamber measurements

The soil texture of measurement site including surface vegetation is fine sandy till
(sandy loam) according to maps provided by Geological Survey of Finland, (a geo-10

logical map available at: http://geomaps2.gtk.fi/geo/, 2009). In the south direction soil
texture changes to clay 100 m away from the measurement site. The detailed soil type
was determined (in laboratory studies , Soil Analysis Service in Mikkeli, Finland) to be
gravely sandy loam (fractionated soil type) in the first 7 cm. The 7 cm to 20 cm layer
was determined as fine sandy till (coarse soil type).15

The field measurement setup included a stainless steel chamber (60 cm×60 cm)
fixed into ground about 5 cm in depth. One chamber was normally used, except on
30 October 2007, when two chambers were used for comparison. The low grass
species vegetation was removed inside the chamber. Both the chamber and aluminium
cover was 20 cm in height. A small battery-operated fan was attached inside the cover20

to ensure mixing in the closed-chamber. The first sample was taken immediately after
lowering the cover. The following samples were taken after 2 to 5 min intervals. The
sampling from the closed chamber was made through a silicon tube mounted on the
top of aluminium cover. A 20 cm3 plastic syringe with three-way stop-cock valve was
attached to the silicon tube during the sampling. The total length of the one measure-25

ment cycle was 15 to 20 min, which included 5 samples. The cover was opened after
a cycle and chamber was ventilated for a few minutes. Three to four cycles were made
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in sequence. One ambient air sample was taken about 2 m height for reference pur-
poses during one arbitrarily chosen cycle. The soil temperature was measured using
thermistors and thermocouples. Volumetric soil moisture concentration was measured
by ThetaProbe ML2x sensor. Both soil temperature and moisture was measured four
times outside of the chamber. The air samples were analyzed during the same day.5

The closed chamber setup was tested in a laboratory. The chamber was filled with
hydrogen in air gas, with concentration two times higher than ambient hydrogen mixing
ratio. The hydrogen mixing ratio inside the closed chamber did not change during the
20 min test. The leakage from the syringes was measured and it was found to be
4 ppb h−1.10

2.2 Atmospheric measurements

The sampling inlet was 2 m above the roof of FMI (Finnish Meteorological Institute)
institute building and the roof 25 m above the ground level (53 m a.s.l.). Sample air
was first transferred through plastic tubing at flow speed 10 m/s, with residence ca. 1 s.
A sideflow to hydrogen analyzer was filtered with 1.0 µm Gelman filter and delivered15

through stainless steel tubing to flow restrictor and pressure relief valve, which was
adjusted to pass about 200 cm3 min−1 to analyzer.

A modified RGA5 instrument with RGD detector is used for the detection of molec-
ular hydrogen. After chromatographic separation of sample air, molecular hydrogen is
delivered through the mercury oxide bed. During the chemical reaction of hydrogen20

and the mercury oxide, it was reduced to mercury gas, which concentration is pro-
portional to concentration of hydrogen. Same detector is also able to detect CO. The
detection is based on the absorption of UV light into mercury gas.

A measurement cycle consists of four ambient air samples after which a working
standard sample was measured. Each analysis took 5 min. The system was calibrated25

according to four standards (scale 400–700 ppb) acquired from Max-Planck Institute in
Jena. The reproducibility of RGA5 instrument was estimated by taking into account ten
consecutive working standard samples, and it found to be 1.1% (range 915–950 ppb).
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The linearity of the RGA5 instrument was checked using a series of known mixing ratios
over the atmospheric range, resulting in R2 of 0.97. The quality of measurements was
verified by the intercomparison samples of the EU-project EUROHYDROS.

The radioactive radon isotope 222Rn is measured at the roof of FMI (Finnish Mete-
orological Institute) building. The sampling inlet is the same used for hydrogen. The5

determination of radon is based on the short-lived 222Rn progeny assumed to be in
equilibrium with radon. The air samples are collected onto a filter and one hour means
are calculated. The analysis method is similar than described in Paatero et al. (1998)
and Hatakka et al. (2003).

The weather parameters were monitored with an automated weather station MI-10

LOS 500. Wind parameters were measured with a two component ultrasonic
anemometer at a 32 m high mast next to the FMI institute building and temperature
with a shielded Pt100 detector at 2.5 m above ground.

2.3 Analysis of results

2.3.1 Soil chamber method15

The hydrogen concentration decrease inside a closed-chamber follows exponentially
decreasing function. The hydrogen uptake into the soil follows first-order kinetics as
explained by Yonemura et al. (1999). The exponential fit in Eq. (1) was applied to
concentration values.

C(t) = (C0 − yτ) exp(−t/τ) + yτ, (1)20

where t is time, C0 is hydrogen concentration at time zero. y is a production and τ a
decay term. The deposition velocity is calculated as vd=h/τ, where h is the chamber
height. Hydrogen emission from the soil is taken into account in the production term y .
Hydrogen mixing ratio decreased to 10–20 ppb, when the chamber was kept closed for
three hours in a field test, thus zero hydrogen production can be used.25
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2.3.2 Radon tracer method

The radon tracer method (Levin et al., 1999; Schmidt et al., 2001) is suitable for the tro-
pospheric determination of emission rates of trace gases (e.g. H2, CH4, N2O). There is
a strong covariance between 222Rn, CH4 and also CO2 summer and autumn nighttime
mixing ratios (Levin et al., 1999). This indicates that the changes in trace gas mixing5

ratios originated from the variability of diurnal atmospheric conditions rather than short-
term changes of trace gas emissions (Levin et al., 1999). The radon tracer method was
used only during the nights, when a stable nocturnal boundary layer was formed. The
height of nocturnal boundary layer is usually a few hundreds of meters, in which radon
is accumulating.10

During the nighttime, photochemical processes affecting the hydrogen concentration
are minimal since the intensity of solar irradiation in summer in Helsinki is less than 5%
of the daytime values. The major sink of hydrogen is soil and hydrogen is consumed in
the first few centimeters of the soil (Schmitt et al., 2008). The photochemical reactions,
e.g. due to hydroxyl radical formation from ozone, are not significant in low irradiance15

conditions during the nighttime. The hydrogen flux can be calculated using Eq. (2).

jH2=jRn
∆cH2

∆cRn

(
1 −

λRncRn

∆cRn/∆t

)
(2)

if the radon flux jRn is known (Schmidt et al., 2001). The ∆cH2/∆cRn is a ratio between
the hydrogen concentration difference, ∆cH2 and radon concentration difference, ∆cRn.
λRncRn(t) is the decay rate for radon including radioactive decay constant λRn and radon20

concentration cRn. For the radon tracer method calculations, only those nights were
accepted when hydrogen mixing ratio decreased more than 5 ppb and radon activity
concentration increased more than 0.6 Bq m−3 between 23:00 and 5:00 LT. Only high
correlation R2>0.8 events which had five or six hours of data were selected.
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2.3.3 Two-dimensional model

The hydrogen deposition velocities were also determined by a two-dimensional model.
The model was built for support, comparison and verification of other methods de-
scribed earlier. It has been applied for hydrogen soil deposition studies in Northern
Finland by Lallo et al. (2009). The model is based on the three dimensional atmo-5

spheric model (Aalto et al., 2006). The variation in vegetation, land use and topogra-
phy is suppressed to one specified type to gain faster simulation run times, while the
surface fluxes are inverted from atmospheric concentration observations. By aiming
to estimate regionally averaged soil surface fluxes, and assuming that the boundary
layer height can be adequately simulated, then the detailed vegetation and topography10

description is less important for the current study. A 5 m thick surface layer was built
in the model, where the soil acted as a passive solid and fluxes were defined only in
the air-soil interface of the model. The model was run with setup of 3 km vertical extent
(12 layers) and horizontal extent of 10 km (10 grid boxes) to allow for adjustment of
boundary layer and profiles.15

The commercial fluid dynamics software Fluent® was used to solve fluxes and con-
centrations of radon and hydrogen. The mass and energy exchange formulations in
the soil-air surface were modeled by user defined codes added to the model (Aalto
et al., 2006). The necessary boundary conditions were also given based on local
observations. The turbulence inside the domain was simulated using the standard20

K-epsilon theory by Launder and Spalding (1972). The model equations for energy,
turbulence, fluid and species transport were solved in segregated mode. The model
allowed changes to the initial value of meteorological pressure i.e. the model was non-
hydrostatic.

As in the case of radon tracer model, the nighttime simulations were made to avoid25

indirect photochemical degradation of hydrogen. The model was initialized few hours
before the selected time range to achieve balanced state. During the simulation, the
hydrogen and radon outflow vertical profile from the preceding time step was used as
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a new input to following time steps. The deposition velocities and radon exhalation
rates were solved at every time step to let the modeled outflow concentration meet
the observed concentrations at Kumpula site. The hydrogen and radon surface fluxes
were thereby inverted from the concentration observations. Simulation results consist
of stabilized flux values obtained at the end of each simulation hour. For hydrogen, only5

those nights were accepted when there was at least four hours of monotonous increase
in radon and decrease in hydrogen mixing ratios. In the case of radon, also nights with
no hydrogen decrease were accepted. These selection criteria are somewhat different
from radon tracer method and result in a larger number of events. Our aim was to
obtain an extensive data set especially for radon, so that we could estimate the radon10

exhalation rate separately for winter and summer.
The boundary layer height simulated by the two-dimensional model was compared

to ceilometer data at about 2 km distance from the Kumpula site. The model produced
a turn in the potential temperature profile, which was interpreted as the top of the
boundary layer. On 13 July 2007, at 02:00 to 04:00 LT the turn occurred at 124 m15

height, while on 18 July 2007 at 00:00 to 05:00 LT it appeared at the next model level,
198 m above ground. The ceilometer boundary layer (BL) estimate for these nights
showed high variability which could not be reproduced by the model, on 13 July 2007,
80–240 m, and on 18 July 2007, 310–590 m, respectively. On contrasting winter night
conditions (−15◦C) in 10 February 2007, the model simulated the first inversion at 75 m20

model level, and second at 198 m level, while ceilometer results indicated 70–200 m
for the BL height. Generally, when the observations showed lower BL height, also the
model indicated a shallow BL. However, the model results were in the lower end of the
range given by observations, and therefore the simulated BL height may be somewhat
too low. This would result in underestimation of the inverted hydrogen and radon fluxes.25
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3 Results

3.1 Hydrogen deposition velocities from soil chamber measurements

The chamber measurements were performed between 28 October 2005 and 30 Oc-
tober 2007 at the urban park site in Kumpula. The automatic weather system
(AWS) data collected from Helsinki area (Kaisaniemi and Kumpula) was used in5

the interpretation of chamber and model results. Hydrogen vd values are shown in
Fig. 1. The lowest close to zero vd values were measured in January to March 2006
and highest 0.70±0.02 mm s−1 on 15 June 2006. The winter (12 field days from
November to April) vd values ranged from 0.00 mm s−1 to 0.42 mm s−1 with mean
value of 0.20±0.05 mm s−1 and in summer (10 field days from May to October) from10

0.13 mm s−1 to 0.70 mm s−1 with mean value of 0.34±0.06 mm s−1.
The lowest values occurred when snow covered the ground, as indicated by Lallo et

al. (2008). The highest vd value (0.18±0.04 mm s−1) with permanent snow cover was
measured on 2 February 2007 (Fig. 2). Snow depth was then 16 cm, soil temperature
+0.5◦C and soil volumetric water content 0.27 m3 m−3. When snow depth exceeded15

20 cm, vd values were close to zero. When snow layer thickness was between 10 cm
and 20 cm, vd mean values were lower than 0.20 mm s−1.

Hydrogen vd values are shown together with corresponding air and soil temperatures
in Fig. 3a. There is large scatter in vd, but it tends to get lower values in freezing
temperatures. In Fig. 3b hydrogen vd is plotted against soil volumetric water content20

showing lower values at high soil moistures. In general, the lower limit of vd values
from chamber measurements was 0.24 mm s−1 and the upper limit was 0.45 mm s−1,
provided that no exceptional weather conditions (e.g. drought or intense rain) occurred.
The soil volumetric water content ranged in this region from values 0.29 m3 m−3 to
0.41 m3 m−3. The soil and air temperature varied in this group between 2◦C to 8◦C and25

2◦C to 12◦C, respectively.
According to measurement records, heavy rain showers decreased soil uptake when
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there had been precipitation within three days before. An intensive thundershower
(13.8 mm) two days before hindered the soil uptake on 24 August 2007, lowering vd

to 0.13±0.01 mm s−1, which was the lowest summer time vd value in the whole mea-
surement period. On 2 August 2007 weather conditions were favoring strong soil up-
take. Soil temperature and volumetric water content was 15◦C and 0.24 m3 m−3 respec-5

tively, but only 0.33±0.01 mm s−1 was recorded. Three days before 20.4 mm rain was
recorded. The total amount of 24.1 mm precipitation was recorded on 31 October 2006
with vd value of 0.34 mm s−1. Compared to high summer values recorded in 2006, soil
uptake was significantly reduced. Soil volumetric water content was 0.41 m3 m−3.

There was a four-month drought in 2006 in Helsinki area, during which high vd val-10

ues of 0.509±0.004 mm s−1 (2 August), 0.55±0.02 mm s−1 (31 May) 0.70±0.02 mm s−1

(15 June) were measured. Soil volumetric water content values were between 9 m3 m−3

and 25 m3 m−3, while the typical soil volumetric water content values obtained in the
field measurement were higher than 0.29 m3 m−3. The cumulative rain sum between
26 May and 29 September 2006 was only 51.6 mm (287.3 mm in 2007 and 265.2 mm15

in 2008) in Helsinki area. In May 2008 rain sum was significantly lower (7.5 mm) than
in May 2006 (41.6 mm) and 2007 (58.9 mm) (Fig. 4).

3.2 Hydrogen deposition velocities and radon exhalation rates from two-
dimensional model simulations

The two-dimensional model results covered the time period between June 2007 and20

July 2008, when atmospheric hydrogen mixing ratios were continuously measured
at Kumpula. The modeled winter (17 nights) vd values ranged from 0.12 mm s−1

to 0.46 mm s−1 with mean value of 0.26±0.02 mm s−1 and in summer (31 nights)
from 0.13 mm s−1 to 0.61 mm s−1 with mean value of 0.35±0.02 mm s−1 (Fig. 1).
The modeled mean radon exhalation rate in winter (from November to April) was25

22±1 Bq m−2 h−1 and in summer (from May to October) 45±3 Bq m−2 h−1 with highest
values occurring in August 2007 (Fig. 5). The highest exhalation rates were observed
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during northerly winds when air masses traveled above continent and captured high
radon activities before arrival to the site. The northerly-northeasterly winds dominated
during August 2007 high radon exhalation nights. Generally, the conditions were favor-
able for radon exhalation in summer when the soil was not saturated with water despite
of short rain periods which lowered radon exhalation rates. Radon exhalations are de-5

picted against one week cumulative precipitation in Fig. 6a. Pearson product moment
correlation for Fig. 6a is −0.321. Correlation is significant at the 0.01 level (2-tailed).
Over 100 Bq m−2 h−1 emission values were reached in dry conditions, while 25 mm
precipitation lowered the radon emission down to 50 Bq m−2 h−1. Correspondingly, one
week dry period raised the hydrogen soil uptake to hydrogen deposition velocity val-10

ues up to 0.7 mm s−1 and 30 mm precipitation decreased the vd values down to about
0.3 mm s−1 (Fig. 6b). Pearson product moment correlation for Fig. 6b is −0.293. Corre-
lation is significant at the 0.05 level (2-tailed), when outliers were excluded. The winter
soils were typically moister than the summer soils due to lower evapotranspiration reg-
ulated by global irradiation, which had a maximum of over 600 W m−2 in June, while15

in December less than 100 W m−2 (Fig. 4) was reached (see also Vesala et al., 2006).
This can be seen in the yearly cycle of radon exhalation rates in Fig. 5, as well as in
the hydrogen results in Fig. 1, where lower chamber vd values were recorded during
winter.

3.3 Hydrogen deposition velocities from radon tracer method20

The radon tracer method results covered the time period between June 2007 and
July 2008. According to radon tracer method, in winter (November to April, 9 nights),
modeled vd values ranged from 0.14 mm s−1 to 0.68 mm s−1 with a mean value of
0.34±0.07 mm s−1 and in summer (May to October, 28 nights), modeled vd values
ranged from 0.13 mm s−1 to 0.90 mm s−1 with a mean value of 0.41±0.04 mm s−1

25

(Fig. 1). The radon tracer method is dependent on the radon exhalation rate, which
was estimated by the two-dimensional model. The average winter rate was used for
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November to April and summer rate for May to October. The annual cycle of hydro-
gen deposition velocities was similar than the one simulated with the two-dimensional
model, but there were cases when radon tracer method indicated higher values than
two-dimensional model, which can be seen in Fig. 1 and Fig. 6b. The range of both
radon tracer method and two-dimensional model results was in good agreement with5

the chamber results.
All methods delivered results on 30 October 2007, the radon tracer method and two-

dimensional model vd values were 0.68±0.16 mm s−1 and 0.39±0.18 mm s−1 respec-
tively, while soil chambers indicated a vd of only 0.19±0.02 mm s−1. Soil water content
was 0.33 m3 m−3 and soil temperature was 9◦C. There was rain during 30 October 200710

which may have affected the soil chamber result, measured at midday, while the other
estimates refer to earlier nighttime observations from drier soils. In general, the Oc-
tober 2007 rain sum was significantly lower, 56 mm, than in October 2006, 183.6 mm
and in 2008, 166.6 mm. The results also had a lot of statistical variation. The difference
between radon tracer method and two-dimensional model was probably due to choice15

of data. For example, if only three hours with the largest change in hydrogen and radon
are selected from the two-dimensional model simulations, the resulting vd increases to
0.65 mm s−1.

4 Discussion

4.1 Radon exhalation rate20

The radon tracer method is dependent on pre-calculated radon exhalation rate jRn,
which is based on regional radon emission estimates. The radon exhalation rates were
measured by Dörr and Münnich (1990) in cultivated fields and undisturbed forest soils.
The fluxes were in the range 500 dpm m−2 h−1 and 6500 dpm m−2 h−1 (8–108 Bq m−3,
1 dpm=1/60 Bq) in West Germany and the average value was 3200 dpm m−2 h−1

25

(53 Bq m−2 h−1). Szegvary et al. (2007) measured exhalation rates at 8 locations in
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southern Finland by using soil chambers. There were significant variations in radon
exhalation rates, which were between 51 Bq m−2 h−1 and 134 Bq m−2 h−1 including one
peak value of 189 Bq m−2 h−1. An average value of 100±17 Bq m−2 h−1 was obtained
when eight locations in southern Finland was included to calculations (88 Bq m−2 h−1

if peak value was excluded). Levin et al. (2002) measured radon exhalation rates for5

moist boreal forest using closed-chamber technique at Fyodorovskoye in Russia. 222Rn
exhalation rates were in the range 3.3 Bq m−2 h−1 to 7.9 Bq m−2 h−1, while water table
depth were from 5 cm to about 70 cm. Strong relation between water table depth and
radon fluxes was found. (Levin et al., 2002; Conen and Robertson, 2002). Conen and
Robertson (2002) measured 222Rn flux using closed-chamber technique. They found10

that radon flux was at the highest in mineral soil type with no humic layer, decreasing
towards more humic and organic soil type.

A modeled radon exhalation rate can also be used as an input to the radon tracer
method. Our radon fluxes simulated with the two-dimensional model were lower in
comparison to the southern Finland and Germany chamber results, but higher in com-15

parison to Fyodorovskoye. The highest values were obtained during northerly winds
from the continent. Thus the proximity of the sea may have a lowering effect on the
mean values. Also, the two-dimensional model can provide only a crude estimate of
the boundary layer height which has a direct effect on the magnitude of the inverted
flux. However, it is not probable that the mean radon fluxes are heavily underestimated.20

According to radon tracer method the hydrogen deposition velocity values are propor-
tional to the radon exhalation rate (Eq. 2) and the method would yield unrealistically
high deposition velocities if radon fluxes were multiplied by e.g. a factor of two.

4.2 Comparison between the methods

The results of chamber measurements were in the same range with the earlier mea-25

surements made in boreal zone (Rahn et al., 2002; Smith-Downey et al., 2008). Ac-
cording to chamber measurement results, hydrogen soil deposition increased on May
to August 2006 after long drought. During that time soil volumetric water content varied
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between 0.09 m3 m−3 and 0.25 m3 m−3, which was significantly lower than typical val-
ues (0.29 m3 m−3 to 0.41 m3 m−3) recorded in 2005 and 2007–2008. Highest vd values
0.5 mm s−1 to 0.7 mm s−1 were measured in high soil temperature conditions from 10◦C
to 17◦C, which was usually recorded from May to August. Negligibly small vd values
were measured, when air and soil temperatures were near-zero and soil surface was5

snow covered. The soil volumetric water content was usually higher in winter than in
summer. The dependency of vd to soil volumetric water content (in this study R2 was
0.47) might be more important than to soil temperature (Schmitt et al., 2008). The dry-
ness of soil is in correlation with the high soil temperature. The high soil water content
effectively hindered the hydrogen diffusion into ground.10

The modeled hydrogen deposition values were compared against chamber mea-
surements and using several parameters, such as air/soil temperature and soil volu-
metric water content. The modeled and measured vd values were in good agreement
with each other and their annual cycles were similar (Fig. 1). The radon tracer vd val-
ues were distributed more evenly in summer time (May to October), yielding values15

from 0.13 mm s−1 to 0.9 mm s−1. The vd values of two-dimensional model were dis-
tributed to more narrow range (0.12 mm s−1 to 0.61 mm s−1) than radon tracer method.
In winter time both radon tracer and two-dimensional model produced vd values lower
than 0.33 mm s−1. Within the modeled period the lowest air temperature was −5◦C and
highest 21◦C. Among both models, results did not show clear temperature dependency20

in above zero temperatures. Hammer and Levin (2009 and references therein) used
also radon tracer method for the estimation of nocturnal soil uptake rate and respective
hydrogen deposition velocities in urban/suburban environment. Estimated vd values
ranged from 0.1 mm s−1 to 0.8 mm s−1, which is close to our results.

4.3 Precipitation and vd25

A strong solar irradiation during summer (May to July) above 600 W m−2 is capable to
dry the top soil layer allowing higher soil uptake. In fall, low solar irradiation and more
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frequent rain periods keep the soil volumetric water content level high. Chamber mea-
surements made on rainy weather conditions indicate low hydrogen deposition rates.
Field measurement made on 24 August 2007 was affected by intensive thunderstorm
two days before. All field measurements where vd was less than 0.2 mm s−1 were snow
results, except 24 August and 30 October 2007. However, soil volumetric water content5

at 24 August was not higher than typical values. There is not a single factor, which fully
explains the lowest vd value, but the soil surface may have compacted after rain, hin-
dering gas diffusion into ground. On the other hand high vd values were occasionally
measured in high soil volumetric water content conditions. In these cases, the probe
may have overestimated the soil volumetric water content, especially when the soil10

surface was moist due to small amount of rain. In snowy winter conditions, vd values
were small at sub-zero temperatures. This is supported by results of Lallo et al. (2008),
who made field measurements in winter with snow cover. Snow cover hinders the gas
diffusion into ground resulting in lower vd as shown in Fig. 2. Rhee et al. (2006) found
out that seasonal variation is mainly controlled by snow cover in Northern Hemisphere15

based on deuterium ratio measurements and estimating effective land surface. Yone-
mura et al. (2000) found, based on modeling and measurements, that diffusion into soil
is an important factor controlling hydrogen and carbon monoxide soil uptake.

The comparison of vd values and radon exhalation rates with rain records showed
a decreasing trend towards increased one week cumulative precipitation. The de-20

creased soil uptake rate and radon exhalation was possibly due to higher water table
level and/or higher soil volumetric water content. Precipitation has effects to short-term
variations to 222Rn flux (Szegvary et al., 2007). Szegvary et al. (2007) found during the
long-term measurements (June to November 2006) in Basel, that while the prolonged
dry period decreased the soil volumetric water content, the 222Rn flux increased about25

100% until the beginning of August. The 222Rn flux was enhanced due to increased
diffusion and air-filled porosity and decreased soil volumetric water content. Later mea-
surements on September in three rainy days showed that 222Rn flux decreased imme-
diately with the beginning of precipitation, preventing 222Rn diffusion into atmosphere
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(Szegvary et al., 2007). In Finland there was a dry period from June to August 2006.
Lowest soil volumetric water content in conjunction with high temperature increased the
hydrogen soil uptake, vd values were >0.5 mm s−1, due to enhanced diffusion into the
soil layers. Schery et al. (1984) found also that radon flux and its diffusion into ground
is reduced in rainy conditions due to capping effect of the top soil layer. Rain seals the5

upper surface pores, thus retarding the radon exhalation. Soil exhalation values show
significant spatial variation, correlated to soil water content.

5 Conclusions

Hydrogen deposition velocities in urban environment were measured. The field mea-
surements were made using closed-chamber technique. The results calculated from10

the field measurements were further compared and verified with the modeled hydrogen
deposition velocity values applying two-dimensional model and radon tracer method.
Hydrogen deposition velocity values obtained from all three methods were in good
agreement with each other. Based on the chamber measurements in rainy conditions
the decreased deposition velocity suggests that increased soil volumetric water content15

hinders the gas diffusion into ground leading to decreased hydrogen deposition velocity
rate. The soil volumetric water content values did not vary enough to see clear moisture
dependency among hydrogen deposition velocity values. However a good agreement
was found between the modeled and measured hydrogen deposition values compared
to one week cumulative rain.20
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Fig. 1. Hydrogen deposition velocity (vd) values from the chamber measuements, and using 3 

radon tracer method and two-dimensional model. vd values are presented as mean ± standard 4 
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Fig. 1. Hydrogen deposition velocity (vd) values from the chamber measuements, and using
radon tracer method and two-dimensional model. vd values are presented as mean ± standard
error of the mean (SE).
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Fig. 2. The effect of snow depth to soil uptake rate. R2, i.e. squared correlation coefficient, is
0.62.

14895

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14873/2009/acpd-9-14873-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14873/2009/acpd-9-14873-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14873–14899, 2009

Hydrogen soil
deposition at an

urban site in Finland

M. Lallo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 22

Temperature (°C)

-15 -10 -5 0 5 10 15 20 25

H
y
d

ro
g

e
n

 d
e

p
o

s
it
io

n
 v

e
lo

c
it
y
 (

m
m

 s
-1

)

0.000

0.200

0.400

0.600

0.800

1.000

Air Chamber

Air 2D model

Air Rn tracer

Soil Chamber 

Soil 2D model

Soil Rn tracer

A

Soil volumetric water content (m3 m-3)

0 10 20 30 40

H
y
d

ro
g

e
n

 d
e

p
o

s
it
io

n
 v

e
lo

c
it
y
 (

m
m

 s
-1

)

0.000

0.200

0.400

0.600

0.800

1.000

Chamber
B

 1 

Fig. 3. a) The depencency of measured and four modeled hydrogen deposition velocity values 2 

to air / soil temperature of chamber measurements. and b) the depencency of measured 3 

hydrogen deposition velocity to soil volumetric water content of chamber measurements. 4 
Fig. 3. (a) The dependency of measured and four modeled hydrogen deposition velocity val-
ues to air/soil temperature of chamber measurements and (b) the dependency of measured
hydrogen deposition velocity to soil volumetric water content of chamber measurements.
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Fig. 4. Biannual global radiation average obtained at 12 UT and biannual cumulative monthly 2 

precipitation 2007-2008 and monthly rain sum for years 2006 to 2008. 3 
Fig. 4. Biannual global radiation average obtained at 12:00 UTC and biannual cumulative
monthly precipitation 2007–2008 and monthly rain sum for years 2006 to 2008.
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Fig. 5. Two-dimensional model results for 
222

Rn exhalation rate jRn. 2 Fig. 5. Two-dimensional model results for 222Rn exhalation rate jRn.
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Fig. 6. The effect of one week cumulative rain to a) the radon exhalation rate (p<0.01) and b) 2 

the modeled and measured hydrogen depositon velocities (p<0.05). 3 Fig. 6. The effect of one week cumulative rain to (a) the radon exhalation rate (p<0.01) and (b)
the modeled and measured hydrogen deposition velocities (p<0.05).
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